Regularizing parameter estimation for Poisson noisy image restoration
نویسندگان
چکیده
ABSTRACT Deblurring images corrupted by Poisson noise is a challenging process which has devoted much research in many applications such as astronomical or biological imaging. This problem, among others, is an ill-posed problem which can be regularized by adding knowledge on the solution. Several methods have therefore promoted explicit prior on the image, coming along with a regularizing parameter to moderate the weight of this prior. Unfortunately, in the domain of Poisson deconvolution, only a few number of methods have been proposed to select this regularizing parameter which is most of the time set manually such that it gives the best visual results. In this paper, we focus on the use of l-norm prior and present two methods to select the regularizing parameter. We show some comparisons on synthetic data using classical image fidelity measures.
منابع مشابه
Regularizing active set method for nonnegatively constrained ill-posed multichannel image restoration problem.
In this paper, we consider the nonnegatively constrained multichannel image deblurring problem and propose regularizing active set methods for numerical restoration. For image deblurring problems, it is reasonable to solve a regularizing model with nonnegativity constraints because of the physical meaning of the image. We consider a general regularizing l(p)-l(q) model with nonnegativity constr...
متن کاملNew PDE-based methods for image enhancement using SOM and Bayesian inference
A novel approach is presented in this paper for improving anisotropic diffusion PDE models, based on the Perona–Malik equation. A solution is proposed from an engineering perspective to adaptively estimate the parameters of the regularizing function in this equation. The goal of such a new adaptive diffusion scheme is to better preserve edges when the anisotropic diffusion PDE models are applie...
متن کاملAdaptive Image Noise Filtering Using Transform Domain Local Statistics
Image noise ltering has been widely perceived as an estimation problem in the spatial domain. In this paper, we deal with it as an estimation problem in an uncorrelated transform domain. This idea leads to a generalization of the adaptive LMMSE estimator for ltering noisy images. In our proposed method, the transform-domain local statistics obtained from the noisy image are exploited. Due to th...
متن کاملEpigraphical Projection for Solving Least Squares Anscombe Transformed Constrained Optimization Problems
This papers deals with the restoration of images corrupted by a non-invertible or ill-conditioned linear transform and Poisson noise. Poisson data typically occur in imaging processes where the images are obtained by counting particles, e.g., photons, that hit the image support. By using the Anscombe transform, the Poisson noise can be approximated by an additive Gaussian noise with zero mean a...
متن کاملMinimizing Loss of Information at Competitive PLIP Algorithms for Image Segmentation with Noisy Back Ground
In this paper, two training systems for selecting PLIP parameters have been demonstrated. The first compares the MSE of a high precision result to that of a lower precision approximation in order to minimize loss of information. The second uses EMEE scores to maximize visual appeal and further reduce information loss. It was shown that, in the general case of basic addition, subtraction, or mul...
متن کامل